Posted: February 10th, 2022

Proofs | Mathematics homework help

7.9.2. Construct formal proofs for all the arguments below. Use equivalence rules, truth functional arguments, and the rules of instantiation and generalization. These may also be proven using the method of tableaux.

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

            

            6. ∀x(Cx ⊃ ¬Sx), Sa ∧ Sb ∴ ¬(¬Ca ⊃ Cb)

            7. ∃xCx ⊃ ∃x(Dx ∧ Ex), ∃x(Ex ∨ Fx) ⊃ ∀xCx ∴ ∀x(Cx ⊃ Gx)

            8. ∀x(Fx ⊃ Gx), ∀x[(Fx ∧ Gx) ⊃ Hx] ∴ ∀x(Fx ⊃ Hx)

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

            9. ∃xLx ⊃ ∀x(Mx ⊃ Nx), ∃xPx ⊃ ∀x ¬Nx ∴ ∀x[(Lx ∧ Px) ⊃ ¬Mx]

            

            10. ∀x(Fx ≡ Gx), ∀x[(Fx ⊃ (Gx ⊃ Hx)], ∃xFx ∨ ∃xGx ∴ ∃xHx

            11. ∃x(Cx ∨ Dx), ∃xCx ⊃ ∀x(Ex ⊃ Dx), ∃xEx ∴ ∃xDx

12. ∀x[(¬Dx ⊃ Rx) ∧ ¬(Dx ∧ Rx)], ∀x[Dx ⊃ (¬Lx ⊃ Cx)], ∀x(Cx ⊃ Rx) ∴ ∀x(Dx ⊃ Lx)

 

ASSIGNMENT 5:

7.9.3. Using the method of tableaux, give an assignment of values for the predicates of each argument that shows that each argument is invalid.

            1. ∀x(Ax ⊃ Bx), ∀x(Ax ⊃ Cx) ∴ ∀x(Bx ⊃ Cx)

            2. ∃x(Ax ∧ Bx), ∀x(Cx ⊃ Ax) ∴ ∃x(Cx ∧ Bx)

            3. ∀x[(Cx ∨ Dx) ⊃ Ex], ∀x[(Ex ∧ Fx) ⊃ Gx] ∴ ∀x(Cx ⊃ Gx)

            4. ∃xMx, ∃xNx ∴ ∃x(Mx ∧ Nx)

            5. ∀x[Dx ∨ (Ex ∨ Fx)] ∴ ∀xDx ∨ (∀xEx ∨ ∀xFx)

 

            6. ∃x(Cx ∧ ¬Dx), ∃x(Dx ∧ ¬Cx) ∴ ∀x(Cx ∨ Dx)

Expert paper writers are just a few clicks away

Place an order in 3 easy steps. Takes less than 5 mins.

Calculate the price of your order

You will get a personal manager and a discount.
We'll send you the first draft for approval by at
Total price:
$0.00
error: Content is protected !!
Open chat
1
Order through WhatsApp!
affordablepaperwritings.com
Hello!
You Can Now Place your Order through WhatsApp
 

 

Order your essay today and save 30% with the discount code DISCOUNTS2022